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On the removal of environmentally
driven microbial associations
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Microbial network inference
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The problem: environmentally driven
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Taxon-driven indirect taxon edges

A taxon can induce an association between two other
taxa (e.g. a grazer feeding on two prey species)

e We assume that taxa alter the environment on a
different time scale than taxa alter other taxa

(approximation: environment influences taxa, but not
vice versa)

* No such simplification possible for taxon-driven taxon

edges



Strategies to remove environmentally
driven edges

Introduction

 “Associations” strategy: compute and analyze
associations between taxa and environmental

factors

— R package WGCNA (gene expression data): identify
clusters in gene-wise correlation/dissimilarity matrices
and check whether a representative (eigen-gene) is
correlated to a trait

 “Residuals” strategy: regress out environmental
factors and compute associations in the residuals

Langfelder & Horvath (2008) BMC Bioinformatics 9, 559.




Example: TARA Oceans

Introduction

* global marine expedition, >200 stations spanning 8 oceani

C regions
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Brum et al. Science 348, 1261498 (2015). Main contributor

de Vargas et al. Science 348, 1261605 (2015).
Lima-Mendez et al. Science 348, 1262073 (2015). )
Sunagawa et al. Science 348, 1261359 (2015). Dr. Lima-Mendez
Villar et al. Science 348, 1261447 (2015).
Pesant et al. Scientific Data 2, 150023 (2015).

in the Raes lab:




TARA Oceans: Overview

Introduction
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Image taken from Pesant et al.
Scientific Data 2, 150023 (2015).

Volume filtered (L)
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* 4 eukaryotic cell size fractions +
bacteria, giruses and viruses

* 2 depths (SUR = surface, DCM =
deep chlorophyll maximum)

* 16S bacterial OTU abundances
(Ilumina _tags)

» 18S V9 eukaryotic OTU
abundances (lllumina)

* Viral contigs assembled from
lllumina reads with SOAPdenovo
and clustered

mtags: Logares et al. Environmental Microbiology
16(9), 2659-2671 (2014).

Viral contigs: Brum et al. Science 348, 1261498
(2015).




Introduction

TARA Oceans: Environmental data
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Rosette vertical
sampling system
(Niskin bottles and
sensors)

Continuous surface
sampling system

Satellite data

Argo profiling
float network

Environmental factors in TARA:
- Temperature

- Depth

- Pressure

- Salinity

- Oxygen

- Nitrogen

- Silicon

- Phosphate

- Chlorophyll

- Particle abundance (beam
attenuation)

- Mean depth of mixed layer (MLD)




Remove environmentally driven taxon edges in
triplets...

Methods - associations

Step 1: Taxon-environment and taxon- Step 2: Network merge and identification
taxon network construction with CoNet of environment-taxon triplets
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... wWith the interaction information

Methods - associations

Step 3: Detection of environment-
driven indirect edges with

II=CI(X,Y|Z)—MI(X,Y)

interaction information (ll) Conditional mutual

Negative ll: redundancy
CI(X,Y|Z)<MI(X,Y) CI(X,Y|Z)=MI(X,Y) CI(X,Y|Z)>MI(X,Y)|| Mutual information

/SI\ ®

A - - - B

Zero ll: no interaction  Positive Il: synergy information

Y v ANV

Significance of interaction information for specific environmental factor:

Original vs random scores fpr parameter NO2
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h Factor-specific threshold for interaction information:

Distribution of interaction information in triplets with
permuted environmental factor.

Below 5% quantile of random interaction information

distribution and below zero.




TARA Oceans: Environmentally driven
taxon edge statistics

Results - associations

* Phosphate induces the largest number of indirect taxon
interactions in marine plankton

* Higher percentage of environmentally driven indirect taxon
interactions for eukaryotic than for prokaryotic phyla

Environmentally induced taxon interactions
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Removing environmentally driven taxon

Methods - residuals

edges: residuals

* Multivariate regression: regress out environmental factors
that influence taxon abundances and look for taxon
covariances/correlations in the residuals

Y=XB+E E ~N(O,R)
* Can be refined by introducing latent variables that capture
missing predictors and by using sparse regression (selection of

the most relevant environmental factors)

Wisz et al. (2012). The role of biotic interactions in shaping distributions and realised
assemblages of species: implications for species distribution modelling. Biological Reviews
Camb Philos Soc. 88, 15-30.

Warton et al. (2015). So Many Variables: Joint Modeling in Community Ecology. Trends in
Ecology & Evolution 30, 766-779.




Example: residuals in action

Methods - residuals

_ Y: Taxon presence/
yi 1f01" Zij >0 absence

d-decaying fungal £
_ < (woo ying fung
yi O for Zij =0 species on tree logs)

X: k Environmental factors
M,=p,+p.x  +.+Px, nmer
intercept  coefficients (tree species, diameter, decay
— ,LL 4 loglt(F[e._ ]) stadium, ground contact, fall
y y type, bark cover etc.)

ei -~ N(O,R) R: Correlf:\tlon matrlz F[]: cumulative density function
(association network) Logit(x) = log(x/(1-x))

Ovaskainen et al. (2010). Modeling species co-occurrence by multivariate logistic regression
generates new hypotheses on fungal interactions. Ecology 91, 2514-2521.




Example: residuals in action, cont’d

Methods - residuals

e 3 tested (without environmental factors,
without species interactions, without both)

correlation correlation
matrix set to matrix inferred
identity

No environmental

factors

environmental factors

included MZ(R)

Considering environment and species interactions gives the best fit

Ovaskainen et al. (2010). Modeling species co-occurrence by multivariate logistic regression
generates new hypotheses on fungal interactions. Ecology 91, 2514-2521.




The problem

Discussion

* Organisms have growth optima, so they may
not respond linearly to environmental factors

PopuIaEion Size

Optimal growth

Sub—opﬁma| srowth Sub-optimal growth

Y

Environmental gradient (pH, tempera




How can we deal with non-linear responses
to environmental factors?

Discussion

* Associations: use general measures of dependency
such as mutual information (but mutual information

needs a lot of data points and there is debate over its
implementation)

* Residuals: measure response functions of species to

environmental factors and select model accordingly

Fernandes & Gloor (2010). Mutual information is critically dependent on prior
assumptions: would the correct estimate of mutual information please identify
itself? Bioinformatics 26, 1135-11309.




Other considerations when removing
environmentally driven indirect edges

Discussion

Missing values
— Associations: pairwise omission possible
Accounting for sequencing depth differences

— Associations: normalization/rarefaction, residuals: sequencing
depth included in the regression model

Compositionality
— Associations: dedicated tools exist (REBACCA, SparCC)
— Compositionality and multivariate regression?
Over-fitting
— With enough samples, cross-validation techniques can be
applied to both strategies



Study design to the rescue: homogeneity

Discussion

Sensitivity

Berry & Widder: “[...]Jwhen co- |"™"™™
occurrence networks are used |- / X

to inf er putat'ive inter act'ions,
Berry & Widder: Sensitivity and specificity

Samples should be drawn from versus number of habitat specialists

similar environments in order to
minimize the effects of habitat
filtering|...]. ”
=> Look at only one habitat
type

Berry & Widder (2014). Deciphering microbial interactions and detecting species with co-
occurrence networks. Frontiers in Microbiology 5, 219.




Study design to the rescue: heterogeneity

Discussion

Pascual-Garcia et al.: “We found that 1000 = —— ] -
77% of the significantly aggregated — siperoee|
pairs co- occur in samples from more

than two different [habitat] subtypes,
60% from more than two types, and
57% from more than one supertype.

Number of significant pairs

10

These data Support the View that mOSt ijber of d;t(‘)ferent envliiomnents %&?here pair ?:f)exists 3
aggregations cannot be explained by

different habitats versus number of

=> Look at cosmopolitans occurring positive edges

in many different habitat types

Pascual-Garcia et al. (2014). Bacteria dialog with Santa Rosalia: Are aggregations of
cosmopolitan bacteria mainly explained by habitat filtering or by ecological interactions?
BMC Microbiology 14, 284.




Suggestions to reduce environmentally driven
taxon edges in microbial networks

Discussion

* Collect many samples from a homogeneous
environment or focus on cosmopolitans
occurring in several different environments

* Cluster samples and check whether sample
groups are driven by environmental factors

e Restrict network inference to samples in one
group (stratify the data)



Validation of environmentally driven edge
removal

Outlook

In silico validation using different models that integrate
environment and species interactions as data generators

Benchmark data set of known microbial interactions (to check
whether ecological interactions are falsely removed)

In vitro experiments on synthetic microbial communities exposed
to varying environmental factors (time series with known ecological
interactions for benchmarking)

Mesocosm experiments exposing well-known microbial
communities to varying environmental factors (time series with
many known ecological interactions for benchmarking)



Large-scale measurement of response functions

Outlook

Need large-scale cultivation studies that vary growth
conditions (pH, temperature) in rich medium in mono-
culture and measure impact on growth
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Appendix

* Pro residuals:

— mathematical model describes how environmental factors
influence taxon abundances

— the combined effects of environmental factors are
considered

e Contra residuals:

— the mathematical model may be wrong (e.g. non-linear
response functions to environmental factors modeled with
linear regression)

— Risk of over-fitting



Appendix

 TARA network construction settings for CoNet

— Spearman and Kullback-Leibler dissimilarity (intersection
enforced)

— Permutation with renormalization (1000 iterations) and
bootstrap (1000 iterations)
— P-value per method and edge computed from both distributions

— P-values of methods merged with Brown’s method and

multiple-testing corrected with Benjamini Hochberg (cut-off at
0.05)

 TARA false negatives due to removal of environmentally
driven taxon edges: 1 out of 43 genus-level interactions
whose partners are present in the input matrices



Appendix

* Edges linking taxa to phosphate: outlier for
negative PO4-eukaryote edges at the surface —
consequence of blooms?

Edge type (total Positive Negative SUR | Positive DCM | Negative
node numbersin | SUR DCM
SUR and DCM

taxon-
environment
union networks)

Prokaryotes 186 286 98 191
(2,922 and 2,777)

Eukaryotes (4,334 273 1178 383 411
and 3,502)



Appendix

* Edges linking taxa to temperature: most
positive edges to temperature at the surface

Edge type (total Positive Negative SUR | Positive DCM
node numbersin | SUR
SUR and DCM
taxon-
environment
union networks)
422 14

Prokaryotes 180
(2,922 and 2,777)

59

Eukaryotes (4,334 756 99 29 94
and 3,502)



Appendix

* Edges linking taxa to NO2: more NO2-
prokaryote edges at the surface than at DCM

Edge type (total Positive Negative SUR | Positive DCM | Negative DCM
node numbers in SUR
SUR and DCM

taxon-
environment
union networks)

Prokaryotes (2,922 225 261 20 62
and 2,777)
Eukaryotes (4,334 295 691 464 286

and 3,502)



Appendix

Comparison of environmentally-driven indirect taxon edge
removal techniques applied to TARA data

— Interaction information in full agreement with sign patterns indicative of
an indirect edge and in partial agreement with network deconvolution

network )
deconvolution #
n=22439 4

| |
|
\
|
| interaction

‘ information
¥ n=11,043

sign patterns
n =29,900

environmental triplets Feizi et al. (2013) Nature Biotechnology
vol. 31, 726-731



