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The	
  problem:	
  environmentally	
  driven	
  
indirect	
  taxon	
  edges	
  

associa4ons	
  can	
  be	
  
inferred	
  due	
  to	
  a	
  
common	
  response	
  of	
  
two	
  microbial	
  taxa	
  to	
  an	
  
environmental	
  factor	
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•  A	
  taxon	
  can	
  induce	
  an	
  associa4on	
  between	
  two	
  other	
  
taxa	
  (e.g.	
  a	
  grazer	
  feeding	
  on	
  two	
  prey	
  species)	
  

•  We	
  assume	
  that	
  taxa	
  alter	
  the	
  environment	
  on	
  a	
  
different	
  4me	
  scale	
  than	
  taxa	
  alter	
  other	
  taxa	
  
(approxima4on:	
  environment	
  influences	
  taxa,	
  but	
  not	
  
vice	
  versa)	
  

•  No	
  such	
  simplifica4on	
  possible	
  for	
  taxon-­‐driven	
  taxon	
  
edges	
  

Taxon-­‐driven	
  indirect	
  taxon	
  edges	
  



Strategies	
  to	
  remove	
  environmentally	
  
driven	
  edges	
  

•  “Associa4ons”	
  strategy:	
  compute	
  and	
  analyze	
  
associa4ons	
  between	
  taxa	
  and	
  environmental	
  
factors	
  	
  
–  R	
  package	
  WGCNA	
  (gene	
  expression	
  data):	
  iden4fy	
  
clusters	
  in	
  gene-­‐wise	
  correla4on/dissimilarity	
  matrices	
  
and	
  check	
  whether	
  a	
  representa4ve	
  (eigen-­‐gene)	
  is	
  
correlated	
  to	
  a	
  trait	
  

•  “Residuals”	
  strategy:	
  regress	
  out	
  environmental	
  
factors	
  and	
  compute	
  associa4ons	
  in	
  the	
  residuals	
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0.45 to 0.8 mm): n = 59; prokaryote-enriched
fractions (0.22 to 1.6 mm, 0.22 to 3 mm): n = 139]
were paired-end shotgun Illumina sequenced to
generate a total of more than 7.2 terabases (Tb),
29.6 T 12.7 Gb per sample (14), enabling compar-
ative analyses with the human gut microbiome for
which metagenomic data of the same order of
magnitude have been published {U.S. Human
Microbiome Project, phase I—stool [1.5 Tb; (15)]}
and the European Metagenomics of the Human
Intestinal Tract project [3.8 Tb; (16, 17)].
To generate a reference gene catalog [see also

(16, 17)], we first reconstructed the genomic con-
tent of Tara Oceans samples by metagenomic as-
sembly and gene prediction (18) and combined
these data with those from publicly available
ocean metagenomes and reference genomes (14).
Specifically, ~111.5 million (M) protein-coding nu-
cleotide sequences were predicted and clustered
at 95% nucleotide sequence identity with 24.4 M
sequences from other ocean metagenomes (14)
and 1.6 M sequences from ocean prokaryotic (n =
433) and viral (n = 114) reference genomes (14).
This resulted in a global Ocean Microbial Refer-
ence Gene Catalog (OM-RGC), which comprises
>40 M nonredundant representative genes from
viruses, prokaryotes, and picoeukaryotes (Fig. 1B).
Compared to a human gut microbial reference
gene catalog (16), the OM-RGC comprises more
than four times the number of genes, most of
which (59%) appear prokaryotic (Fig. 1B). Almost
28% of the genes could not be taxonomically an-
notated. A large fraction is, however, likely of viral
origin, because in size fractions targeting orga-
nisms smaller than 0.22 mm, 37% (SD = 9%) of the
profiled sequence data mapped to nonannotated
genes [see also (19)], whereas in prokaryote-
enriched samples, this fraction decreased to 9%
(SD = 2%). As expected, eukaryotic genes (3.3%)
include those from protists (unicellular eukary-
otes) but also from multicellular, larger organisms
whose gametes or fragmented cells may have been
sampled (14).
In total, 81.4% of the genes were exclusive to

Tara Oceans samples, with only 5.11 and 0.44%
overlapping with GOS sequences and reference
genomes, respectively (Fig. 1B), which highlights
the extent of the unexplored genomic potential
in our oceans. Rarefaction analysis showed that
the rate of new gene detection decreased to 0.01%
by the end of sampling (Fig. 1C), suggesting that
the abundant microbial sequence space appears
well represented, at least for the targeted size
ranges, sampling locations, and depths. Genes
found in only one sample amounted to 3.6% of
the OM-RGC, which may originate from localized
specialists.
To complement the work of Tara Oceans Con-

sortium partners who analyzed viral and protist-
enriched size fractions (19, 20) and integrated data
across domains of life (21, 22), we focused our
analyses on 139 prokaryote-enriched samples,
which included 63 surface water samples (5 m;
SD = 0 m), 46 epipelagic subsurface water samples
mostly from the DCM (71 m; SD = 41 m), and 30
mesopelagic samples (600 m; SD = 220 m). Using
this set, we revealed that gene novelty generally

1261359-2 22 MAY 2015 • VOL 348 ISSUE 6237 sciencemag.org SCIENCE

Fig. 1. Tara Oceans captures novel genetic diversity in the global ocean microbiome. (A) Geographic
distribution of 68 (out of >200 in total) representative TaraOceans sampling stations atwhich seawater samples
and environmental data were collected frommultiple depth layers. (B) Targeting viruses andmicrobial organisms
up to 3 mm in size, deep Illumina shotgun sequencing of 243 samples, followed by metagenomic assembly and
gene prediction, resulted in the identification of >111.5Mgene-coding sequences.The currently largest humangut
microbial reference gene catalog (16) was built with similar amounts of data but from a substantially higher
numberof samples (n= 1,267).Genes identified in our studywere clustered togetherwith >26Msequences from
publicly available data [external genes; see (14)] to yield a set of >40 M reference genes (top left), which equals
more than four times the number of genes in the human gut microbial reference gene catalog (top right). The
combined clustering of genes identified in Tara Oceans samples with those obtained from public resources
allowed us to annotate genes according to the composition of each cluster. For example, a gene was labeled as:
“TARA/GOS” if itsoriginal clustercontainedsequences frombothTaraOceansandGOSsamples.More than81%
of the genes were found only in samples collected by Tara Oceans. A breakdown of taxonomic annotations
(bottom left) shows that the reference gene catalog ismainly composed of bacterial genes (LUCAdenotes genes
that could not unambiguously be assigned to a domain of life). (C) Rarefaction curve of detected genes for 100-
fold permuted sampling orders shows only a small increase in newly detected genes toward the end of sampling.
Thesubplot comparessequencingdepth-normalized rarefactioncurves for 139prokaryoticoceansamples (black)
mapped to the prokaryotic subset of the OM-RGC (24.4 M genes) and the same number of random (100-fold
permuted) human gut samples (pink) mapped to a human gut gene catalog (16).The lower asymptote for the
human gut suggests that the ocean harbors a greater genetic diversity. (D) For the subset of 139 prokaryotic
samples analyzed, the fraction of detected genes that hadpreviously been available in public databases (blue) are
compared to those thatwerenewly identified in samples collectedbyTaraOceans (red).Thebreakdownbyocean
regionanddepths shows that theSouthernOceanand themesopelagic zonehadbeenvastly undersampledprior
to Tara Oceans. NA, not available. Abbreviations: MS, Mediterranean Sea; RS, Red Sea; IO, Indian Ocean; SAO,
South Atlantic Ocean; SO, Southern Ocean; SPO, South Pacific Ocean; NPO, North Pacific Ocean; NAO, North
Atlantic Ocean; GOS, Sorcerer II Global Ocean Sampling expedition; MetaG, genes of metagenomic origin; RefG,
genes fromreferencegenomesequences; LUCA, last universal commonancestor; SRF, surfacewater layer;DCM,
deep chlorophyll maximum layer; MIX, subsurface epipelagic mixed layer; MESO, mesopelagic zone.
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T
he ocean is the largest ecosystem on Earth, and yet we 

know very little about it. This is particularly true for the 

plankton that inhabit the ocean. Although these orga-

nisms are at least as important for the Earth system as 

the rainforests and form the base of marine food webs, 

most plankton are invisible to the naked eye and thus are 

largely uncharacterized. To study this invisible world, the 

multinational Tara Oceans consortium, with use of the 

110-foot research schooner Tara, sampled microscopic 

plankton at 210 sites and depths up to 2000 m in all the major 

oceanic regions during expeditions 

from 2009 through 2013 (1). 

Success depended on collabora-

tion between scientists and the 

Tara Expeditions logistics team. 

The journey involved not only 

science but also outreach and 

education as well as negotiation 

through the shoals of legal and 

political regulations, funding un-

certainties, threats from pirates, 

and unpredictable weather (2). At 

various times, journalists, artists, 

and teachers were also on board. 

Visitors included Ban Ki-moon 

(Secretary-General of the United 

Nations) and numerous young-

sters, including schoolchildren 

from the favelas in Rio de Janeiro. 

Sampling, usually 60 hours per 

site, followed standardized protocols (3) to capture the morpho-

logical and genetic diversity of the entire plankton community from 

viruses to small zooplankton, covering a size range from 0.02 µm 

to a few millimeters, in context with physical and chemical infor-

mation. Besides the sampling, a lab on board contained a range of 

online instruments and microscopes to monitor the content of the 

samples as they were being collected. The main focus was on the 

organism-rich sunlit upper layer of the ocean (down to 200 m), but 

the twilight zone below was also sampled. Guided by satellite and 

in situ data, scientists sampled features such as mesoscale eddies, 

upwellings, acidic waters, and anaerobic zones, frequently in the 

open ocean. In addition to being used for genomics and oceanogra-

phy, many samples were collected for other analyses, such as high-

throughput microscopy imaging and flow cytometry. The samples 

and data collected on board were archived in a highly structured 

way to enable extensive data processing and integration on land (4). 

The five Research Articles in this issue of Science describe the sam-

ples, data, and analysis from Tara Oceans (based on a data freeze 

from 579 samples at 75 stations as of November 2013).

De Vargas et al. used ribosomal RNA gene sequences to profile 

eukaryotic diversity in the photic zone. This taxonomic census 

shows that most biodiversity belongs to poorly known lineages of 

uncultured heterotrophic single-celled protists. Sunagawa et al. used 

metagenomics to study viruses, prokaryotes, and picoeukaryotes. 

They established a catalog with >40 million genes and identified 

temperature as the driver of photic 

microbial community composition. 

Brum et al., by sequencing and elec-

tron microscopy, found that viruses 

are diverse on a regional basis but 

less so on a global basis. The viral 

communities are passively trans-

ported by oceanic currents and 

structured by local environments. 

Lima-Mendez et al. modeled inter-

actions between viruses, prokary-

otes, and eukaryotes. Regional and 

global parameters refine resulting 

networks. Villar et al. studied the 

dispersal of plankton as oceanic 

currents swirl around the south-

ern tip of Africa, where the Agulhas 

rings are generated. Vertical mixing 

in the rings drives nitrogen cycling 

and selects for specific organisms. 

Tara Oceans combined ecology, systems biology, and ocean-

ography to study plankton in their environmental context. The 

project has generated resources such as an ocean microbial refer-

ence gene catalog; a census of plankton diversity covering viruses, 

prokaryotes, and eukaryotes; and methodologies to explore interac-

tions between them and their integration with environmental con-

ditions. Although many more such analyses will follow, life in the 

ocean is already a little less murky than it was before. 
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TARA	
  Oceans:	
  Overview	
  

examples below. Already-built URL queries for each campaign, station or event are provided in the three
respective registries (Data Citations 6–8).

Campaign-specific environmental data query: http://www.pangaea.de/search?q=TARA_20110401Z
Station-specific environmental data query: http://www.pangaea.de/search?q=TARA_100
Event-specific environmental data query: http://www.pangaea.de/search?q=TARA_20110416T1306Z_
100_EVENT_CAST

A list of nucleotides data published at ENA can be obtained by combining the following base URL:
http://www.ebi.ac.uk/ena/data/search?query= with a search term. The URL query is made specific to any
Tara Oceans campaign, station or event by adding the corresponding label as the search term. Already-
built URL queries for each campaign, station or event are provided in the three respective registries (Data
Citations 6–8).

Figure 5. Empirical basis for the size-fractionation approach and the choice of sampling devices. The
horizontal plane shows the range of body/cell size and natural abundances reported in the literature (Table 2)
for viruses (including giant viruses), prokaryotes, protists and metazoans (coloured boxes). The sampling
devices used to collect plankton o5 μm in size (i.e., high volume peristaltic pump and rosette with Niskin
bottles) and >5 μm in size (i.e., plankton nets) are illustrated as well on the horizontal plane. The vertical plane
shows the volume of seawater required to capture 100, 75 and 50% of species richness reported in the literature
(Table 2) for viruses (including giant viruses), prokaryotes, protists and metazoans (shaded boxes). The typical
volume of seawater collected by sampling devices are shown in comparison (horizontal thick lines). Also
illustrated on the vertical plane: Sieves were used to remove large organisms from protists net samples.
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• 	
  4	
  eukaryo4c	
  cell	
  size	
  frac4ons	
  +	
  
bacteria,	
  giruses	
  and	
  viruses	
  	
  
• 	
  2	
  depths	
  (SUR	
  =	
  surface,	
  DCM	
  =	
  
deep	
  chlorophyll	
  maximum)	
  
• 	
  16S	
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  OTU	
  abundances	
  
(Illumina	
  mitags)	
  
• 	
  18S	
  V9	
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• 	
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  reads	
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  and	
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mitags:	
  Logares	
  et	
  al.	
  Environmental	
  Microbiology	
  
16(9),	
  2659-­‐2671	
  (2014).	
  
Viral	
  con4gs:	
  Brum	
  et	
  al.	
  Science	
  348,	
  1261498	
  
(2015).	
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TARA	
  Oceans:	
  Environmental	
  data	
  
Environmental	
  factors	
  in	
  TARA:	
  
-­‐	
  Temperature	
  
-­‐	
  Depth	
  
-­‐	
  Pressure	
  
-­‐	
  Salinity	
  
-­‐	
  Oxygen	
  
-­‐	
  Nitrogen	
  
-­‐	
  Silicon	
  
-­‐	
  Phosphate	
  
-­‐	
  Chlorophyll	
  
-­‐	
  Par4cle	
  abundance	
  (beam	
  
aienua4on)	
  
-­‐	
  Mean	
  depth	
  of	
  mixed	
  layer	
  (MLD)	
  
…	
  

Roseie	
  ver4cal	
  
sampling	
  system	
  
(Niskin	
  boiles	
  and	
  
sensors)	
  

two Sub-Sections describe how [5] environmental features were selected and sampled; and how [6]
plankton were collected for imaging and genetic analyses. These methods were also described briefly in
Karsenti et al. (2011)3.

[1] Atmospheric and oceanographic context at the mesoscale
The regular sampling programme was designed to study a variety of marine ecosystems and to target
well-defined meso- to large-scale features such as gyres, eddies, currents, frontal zones, upwellings, hot
spots of biodiversity, low pH or low oxygen concentrations. A total of 210 stations were characterised at
the mesoscale to provide richer environmental context for the morphological and genomic study of
plankton (Fig. 2). In order to identify these features before sampling but also to assess a posteriori if
sampling events carried out during a station were taken within a relatively homogeneous environment,
the atmospheric and oceanographic context were determined at the mesoscale, using climatologies,
remote sensing products and arrays of Argo profiling floats. Meteorological forecast services, satellite
observations (Chlorophyll a, sea surface temperature (SST) and altimetry) and real-time ocean model
outputs (Mercator Ocean) were also used on a daily basis to revise sampling positions with respect to the
selected oceanographic features.

Mapped altimetry from AVISO (Archiving Validation and Interpretation of Satellite Data in
Oceanography), mapped operational SST (OSTIA), and satellite ocean colour (ACRI-ST GlobColour
service) were used to describe the spatial and temporal variability of key environmental parameters at
each sampling station. In addition, Temperature-Salinity profiles available around sampling stations were
compiled from the Argo autonomous network array. Finally, a [BATOS] meteorological station mounted
on-board Tara continuously measured wind speed and direction, and air temperature, pressure and
humidity, which helped determine the variability of atmospheric conditions and vertical mixing of
surface waters.

In addition to the regular sampling programme, topical experiments were designed to study ocean
processes that operate at spatial and/or temporal scales larger or smaller than the mesoscale (Fig. 3).

a

b

c

Figure 1. Sampling devices and working areas on-board SV Tara. Sampling devices and working areas
on-board SV Tara are shown from the vessel’s [a] side-view, [b] bird’s-eye-view of the deck, and [c]
inside-view. They consist of the [1] Continuous Surface Sampling System [CSSS]; [2] Rosette Vertical Sampling
System [RVSS]; [3] wet lab and storage in liquid nitrogen; [4] High Volume Peristaltic pump [HVP-PUMP];
[5] dry lab; [6] oceanography engineers data acquisition and processing area; [7] winch; [8] video imaging area;
[9] storage areas at room temperature; [10] storage areas at +4 °C and −20 °C; [11] MilliQ water system and
AC-s system; [12] diving equipment, flowcytobot and ALPHA instruments; and [13] storage boxes. The flow of
seawater from the continuous surface sampling system to the dry lab is shown in blue.

www.nature.com/sdata/
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Step	
  3:	
  Detec4on	
  of	
  environment-­‐
driven	
  indirect	
  edges	
  with	
  
interac4on	
  informa4on	
  (II)	
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  mutual	
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size ranges, and four organismal domains (Bac-
teria, Archaea, Eukarya, and viruses) (28). To re-
duce noise and thus false-positive predictions,
we restricted our analysis to taxa present in at
least 20% of the samples and used conservative
statistical cutoffs. We merged the individual net-
works into a global network, which features a
total of 127,995 distinct edges, of which 92,633
are taxon-taxon edges and 35,362 are taxon-
environment edges (Table 1). Node degree does
not depend on the abundance of the node (28).
As such, this network represents a resource
with which to examine species associations in
the global oceans (28–31).
Next, we assessed howmany of the taxon links

represented “niche effects” driven by geography
or environment (such as when taxa respond sim-
ilarly to a common environmental condition).
We examinedmotifs consisting of two correlated
taxa that also correlate with at least one com-
mon environmental parameter (“environmental
triplets” to identify associations that were driv-
en by environment) using three approaches
[interaction information, sign pattern analysis,
and network deconvolution (32)]. We identi-
fied 29,912 taxon-taxon-environment associa-
tions (32.3% of total). Among environmental
factors, we found that PO4, temperature, NO2,
and mixed-layer depth were frequent drivers of

network connections (Fig. 1A). Although the
three methodologies pinpoint indirect associ-
ations, only interaction information directly
identifies synergistic effects in these biotic-abiotic
triplets. Exploiting this property, we disentangled
the 29,912 environment-affected associations
into 11,043 edges driven solely by abiotic factors
(excluded from the network for the remainder of
the study) (31, 33) and 18,869 edges whose de-
pendencies result from biotic-abiotic synergistic
effects. Thus, we find that a minority of asso-
ciations can be explained by an environmental
factor.

Evaluation of predicted interactions

Co-occurrence techniques have heretofore mainly
been applied to bacteria. We detected eukaryotic
interactions on the basis of analysis of sequences
at the V9 hypervariable region of the 18S ribo-
somal RNA (rRNA) gene. We built a literature-
curated collection (34) of 574 known symbiotic
interactions (including both parasitism and mu-
tualism) in marine eukaryotic plankton (30, 35).
From 43 genus-level interactions represented
by OTUs in the abundance preprocessed input
matrices, we found 42% (18 genus pairs; 47%
when limiting to parasitic interactions) repre-
sented in our reference list. The probability
of having found each of these interactions by

chance alone was <0.01 (Fisher exact test, av-
erage P = 4–3, median P = 5e–7). On the basis of
this sensitivity and a false discovery rate aver-
aging to 9% (computed from null models), we
estimate the number of interactions among
eukaryotes present in our filtered input matrices
to be between 53,000 and 139,000. Most of the
false-negative interactions were due to the strict
filtering rules we used to avoid false positives;
this hampers detection when, for example, in-
teractions are facultative or when interaction
partners may vary among closely related groups
depending on oceanic region (4). False positives
could represent indirect interactions between
species (bystander effects) or environmental ef-
fects caused by factors not captured in this study
(36, 37).

Biotic interactions within and
across kingdoms

The integrated network contained 81,590 pre-
dicted biotic interactions (30) that were non-
randomly distributed within and between size
fractions (Fig. 1, B and C) (38). Positive associa-
tions outnumbered mutual exclusions (72% ver-
sus 28%), and we observed a nonrandom edge
distribution with regard to phylogeny (Fig. 2A),
with most associations derived from syndiniales
and other dinoflagellates (examples are shown in
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Fig. 1. Global oceanic taxon-environment interaction network properties.
(A) Major environmental factors affecting abundance patterns. Phosphate con-
centration (PO4), temperature, and nitrite concentration (NO2) are the top three
parameters driving abiotic associations, followed by MLD (assessed by temper-
ature change), Particulate beam attenuation measured at 660 nm, silica con-
centration (Si), nitrite+nitrate concentration (NO2NO3), MLD-s (MLD assessed
by density change), pressure, nitracline, and others corresponds to the agglom-
erated contribution of the rest of parameters tested. (B) Number of interdomain
and intradomain copresences and mutual exclusions. (C) Distribution of edges
across size fractions: 0.2 to 1.6(3), prokaryote-enriched fractions0.2 to 1.6 mmand
0.2 to 3 mm; >08 mm, non-size-fractionated samples; 08 to 5 mm, piconano-
plankton; 20 to 180 mm, microplankton; 180 to 2000 mm, meso-plankton;
interfrac, includes interfraction networks 08 to 5 mm versus 20 to 180 mm, 08 to 5 mm versus 180 to 2000 mm, 20 to 180 mm versus 180 to 2000 mm, and 0.2
to 1.6(3) mm versus ≤ 0.2 mm (virus-enriched fraction).

Table 1. Properties of the merged taxon network.The positive subset of the network was clustered with the leading eigen vector algorithm (91).

Nodes Edges
Positive

edges (%)
Negative
edges

Average
clustering
coefficient

Average
path
length

Diameter
Average

betweenness

Modularity of
positive
network

Number of
modules in
positive
network

9169 92,633 68,856 (74.33) 23,777 0.229 3.43 12 11024 0.51 51
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yi =1!for !zij >0
yi =0!for!zij ≤0
µi = β0 +β1x1,i + ...+βkxk ,i
zij = µij + logit(F[eij ])
ei ∼Ν(0,R) R:	
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  matrix	
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stadium,	
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  logs)	
  

F[]:	
  cumula4ve	
  density	
  func4on	
  
Logit(x)	
  =	
  log(x/(1-­‐x))	
  	
  

habitat requirements suggests that these species actually
co-occur less often than by random.
Among the associations derived from the full model

M2(R) there were more positive than negative ones
(upper diagonals in Fig. 2), which may seem counter-
intuitive given that wood-decaying fungi compete largely
for the same resources. This result may be partly
explained by positive interactions such as facilitation
or parasitism, or indirect interactions mediated through
a third species. Further, some relevant host-tree quality
variables may be missing from the model M2(R). For
example, the chemical composition of the wood, as well
as its water and gas contents and temperature conditions
are likely to affect the establishment, growth and
reproduction of wood-decaying fungi, but we did not
have data on these variables. The co-occurrence of
competitively exclusive species is also possible through
spatial separation inside the log, either horizontally in
different ends of the log, or vertically, in heartwood or in
sapwood.
Many of the significant positive and negative corre-

lations in Fig. 2A were obtained between an early-
successional decayer (e.g., S7, S10, S22) and a mid- or
later-successional decayer (e.g., S2, S11, S15, S16, S21),
supporting the view that the succession of the species
community is much affected by the primary decayer
(Niemelä et al. 1995, Renvall 1995, Heilmann-Clausen
and Boddy 2005). Some of the associations derived from
the full model M2(R) are known from earlier studies,
e.g., Skeletocutis carneogrisea (S19) being considered as
a successor species of Trichaptum abietinum (S22)
(Niemelä 2005). However, for most of the associations
identified here we are not aware of an obvious

explanation, hence these results provide rich material
for deriving hypotheses on direct and indirect species
interactions (Appendix D).
Research conducted at the interface between ecolog-

ical theory and empirical data can be broadly classified
to forward and inverse approaches. Forward approach-
es make assumptions about the underlying processes,
and use mathematical modeling or simulations to
understand how the resulting patterns depend on
parameter regimes and structural model assumptions.
In contrast, with inverse problems one attempts to gain
information on the underlying processes based on data
on the patterns. In this paper, we have addressed an
inverse problem where the pattern is the occurrence of
fungal species as fruit bodies, and the processes relate to
species interactions and colonization–extinction dynam-
ics affected by species niches. As many different
processes can lead to an identical pattern, inverse
problems are mathematically ill posed in the sense that
they lack a unique solution. Thus, our result of the
positive and negative associations among species pairs
(Fig. 2) should not be considered as evidence of direct
interactions, but as data-driven hypotheses that we
propose to be tested with the help of experimental work.
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PLATE 1. Fomitopsis pinicola (S7, large fruit bodies in the front) and Trichaptum abietinum (S22, many small fruit bodies in the
back) often occur on the very same spruce logs. Photo credit: O. Ovaskainen.
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Berry and Widder Microbial interactions and co-occurrence networks

FIGURE 4 | Effect of heterogeneity and habitat filtering on co-occurrence
network performance. The sensitivity and specificity of co-occurrence
networks in revealing direct interactions was tested using the standard
community, while varying carrying capacity and species overlap.
(A) Heterogeneity was simulated by stochastically varying species carrying

capacities at each local site with a certain variance. This is analogous to the
additional noise that would be expected if sites were near to, but not yet in,
steady state. (B) The effect of habitat filtering was explored as a function of
filtering intensity, which is the percent of the metacommunity that cannot
occupy multiple habitats (i.e., percent habitat specialists).

are two options open to the investigator: either to quantify total
absolute abundances of all bacteria—using, for example, qPCR to
determine total bacterial gene copy numbers in each sample—in
order to convert relative compositional data to absolute data, or
to employ a correction using the principle of sub-compositional
coherence (Aitchison, 2003) before correlation analysis, such as
is done in the program sparCC (Friedman and Alm, 2012). As
expected, the specificity of networks suffered when relative abun-
dance data was used, and sparCC correction was able to eliminate
spurious correlations (Figure 2C). Interestingly, sparCC correc-
tion also reduced the sensitivity of these networks compared to
absolute abundance data. While absolute abundance data is the
gold standard for network construction, we recognize that it is
not always feasible to produce this data. For cases in which only
relative abundance data is available SparCC correction is a valu-
able tool, but it should be kept in mind that sensitivity might be
lost when applying this correction.

EFFECT OF ALPHA AND BETA DIVERSITY
Microbial communities in different environments can vary widely
in their composition and structure. Though the experimenter
cannot necessarily influence ecological parameters, it is valuable
to know which factors may cause problems in co-occurrence net-
work inference. We considered the effect of species richness, com-
munity evenness, and similarity of communities across sampling
sites. Species richness and species evenness, which are aspects of
what is known as α (or within-site) diversity, did not have a large
influence on network sensitivity and specificity (Figures 3A,B),

though at very low species richness (10–20 species) there was
a dramatic loss of specificity. This was not an artifact of rel-
ative abundance data since absolute abundance was used, but
rather likely arises from the relatively interaction-rich nature of
these low species richness communities (discussed in the sec-
tion below). Most environments are relatively species-rich, with
estimates of about 102–104 species (Fierer and Lennon, 2011),
but network inference could be problematic for low-species-
richness environments such as the atmosphere (Bowers et al.,
2009), acidic environments (Baker and Banfield, 2003; Tyson
et al., 2004), and glacial ice (Simon et al., 2009) if species that
are present in these environments are interacting frequently with
one another. The structure of most microbial communities is
known to be extremely uneven, with a few dominant taxa over-
shadowing many rare taxa (Huber et al., 2007; Bent and Forney,
2008). Our analysis suggests that community evenness does not
directly affect co-occurrence network sensitivity and specificity.
However, it may have an indirect effect because uneven commu-
nities require increased sampling depth in order to detect the real
species richness, and if this is inadequate the number of detected
species (i.e., the effective richness) will be reduced.

The diversity of communities between different sites, or β

diversity, can be calculated via a variety of metrics (Lozupone
et al., 2007). We used a simple and intuitive metric to quan-
tify the similarity of communities at different sampling sites:
the average percentage of species shared between any two sites
(i.e., the Jaccard similarity). The similarity of communities had a
large effect on network sensitivity (Figure 3C). Though specificity
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To test these scenarios, for each pair of significantly
aggregated taxa we measured the number of different sub-
types, types and supertypes to which the samples where
they co-occur belong. This number was measured as the
exponential of the Shannon entropy, − ∑

i fi log fi, in order
to reduce the impact of unfrequent environments. We
found that 77% of the significantly aggregated pairs co-
occur in samples from more than two different subtypes,
60% from more than two types, and 57% from more than
one supertype. These data support the view that most
aggregations cannot be explained by habitat preferences.
The distribution of the number of different environments
shared by each pair of significantly aggregated taxa is
shown in Figure 3.

Cosmopolitan taxa are prone to aggregate
The study of Tamames et al. [26] found that cosmopoli-
tanism, i.e. the fact that some taxa occurr in very diverse
environments, is relatively common in the bacterial world,
in particular if higher order taxonomic groups are con-
sidered. We set up to further investigate the relationship
between cosmopolitanism and aggregations because of
two reasons: first, since cosmopolitan taxa do not possess
environmental specificity, they may allow distinguishing
between habitat filtering and ecological interactions; sec-
ond, this investigation may give hints on whether aggrega-
tions play a role in the cosmopolitanism of some bacterial
taxa.

We measured taxa cosmopolitanism in two ways: (1)
As environmental cosmopolitanism, i.e. the number of
different environmental subtypes in which a taxon is

present, and (2) As community cosmopolitanism, i.e. the
number of different communities in which a taxon is
present (see Eq.(1) in Methods). To investigate possible
methodological artefacts, we compared the observed
aggregation network and the control network.

The number of aggregations of a taxon is positively
correlated with its cosmopolitanism both for the con-
trol and for the observed network, but in the latter case
the correlation is much stronger (r = 0.64 instead of
r = 0.35). If we normalize the number of aggregations
dividing it by the number of samples in which the taxon
is present, called prevalence, the relationship with cos-
mopolitanism remains positive for the observed network
whereas it becomes negative for the control network (see
Figure 4 for community cosmopolitanism and Additional
file 1: Figure S4 for environmental cosmopolitanism).
This qualitative difference suggests that the observed
relation between aggregations and cosmopolitanism goes
beyond the trivial effect that more common taxa are
more likely to co-occur. Since cosmopolitan taxa do not
present well-defined preferences, it seems unlikely that
the excess aggregation is due to habitat filtering. For
instance, Flavobacterium and Pseudomonas are present
in 36 different subtypes such as Arctic, Mouse Gut, Food
Treatment or Mines among others. The hypothesis that
their cooccurrence is explained by habitat preferences
would imply that these hypothetical preferred properties
co-occur in such a wide variety of environments. A more
economical hypothesis is that the excess of co-occurrence
is explained by cooperative interactions. Another possi-
ble hypothesis is that two cosmopolitan have an indirect
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Figure 3 Distribution of the number of significantly aggregated pairs of taxa that coexist in n different subtypes, types and supertypes.
The number of environments is computed as the exponential of the Shannon entropy. The maximum possible number of environments is 5 at
supertype level, 20 at type level and 46 at subtype level.
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  support	
  the	
  view	
  that	
  most	
  
aggregaBons	
  cannot	
  be	
  explained	
  by	
  
habitat	
  preferences.”	
  
=>	
  Look	
  at	
  cosmopolitans	
  occurring	
  
in	
  many	
  different	
  habitat	
  types	
  

Pascual-­‐Garcia	
  et	
  al.	
  (2014).	
  Bacteria	
  dialog	
  with	
  Santa	
  Rosalia:	
  Are	
  aggrega4ons	
  of	
  
cosmopolitan	
  bacteria	
  mainly	
  explained	
  by	
  habitat	
  filtering	
  or	
  by	
  ecological	
  interac4ons?	
  
BMC	
  Microbiology	
  14,	
  284.	
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Sugges4ons	
  to	
  reduce	
  environmentally	
  driven	
  
taxon	
  edges	
  in	
  microbial	
  networks	
  

•  Collect	
  many	
  samples	
  from	
  a	
  homogeneous	
  
environment	
  or	
  focus	
  on	
  cosmopolitans	
  
occurring	
  in	
  several	
  different	
  environments	
  

•  Cluster	
  samples	
  and	
  check	
  whether	
  sample	
  
groups	
  are	
  driven	
  by	
  environmental	
  factors	
  

•  Restrict	
  network	
  inference	
  to	
  samples	
  in	
  one	
  
group	
  (stra4fy	
  the	
  data)	
  

Di
sc
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n	
  



Valida4on	
  of	
  environmentally	
  driven	
  edge	
  
removal	
  

•  In	
  silico	
  valida4on	
  using	
  different	
  models	
  that	
  integrate	
  
environment	
  and	
  species	
  interac4ons	
  as	
  data	
  generators	
  

•  Benchmark	
  data	
  set	
  of	
  known	
  microbial	
  interac4ons	
  (to	
  check	
  
whether	
  ecological	
  interac4ons	
  are	
  falsely	
  removed)	
  

•  In	
  vitro	
  experiments	
  on	
  synthe4c	
  microbial	
  communi4es	
  exposed	
  
to	
  varying	
  environmental	
  factors	
  (4me	
  series	
  with	
  known	
  ecological	
  
interac4ons	
  for	
  benchmarking)	
  

•  Mesocosm	
  experiments	
  exposing	
  well-­‐known	
  microbial	
  
communi4es	
  to	
  varying	
  environmental	
  factors	
  (4me	
  series	
  with	
  
many	
  known	
  ecological	
  interac4ons	
  for	
  benchmarking)	
  

O
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Large-­‐scale	
  measurement	
  of	
  response	
  func4ons	
  

•  Need	
  large-­‐scale	
  cul4va4on	
  studies	
  that	
  vary	
  growth	
  
condi4ons	
  (pH,	
  temperature)	
  in	
  rich	
  medium	
  in	
  mono-­‐
culture	
  and	
  measure	
  impact	
  on	
  growth	
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Appendix	
  
•  Pro	
  residuals:	
  	
  
–  mathema4cal	
  model	
  describes	
  how	
  environmental	
  factors	
  
influence	
  taxon	
  abundances	
  

–  the	
  combined	
  effects	
  of	
  environmental	
  factors	
  are	
  
considered	
  

•  Contra	
  residuals:	
  	
  
–  the	
  mathema4cal	
  model	
  may	
  be	
  wrong	
  (e.g.	
  non-­‐linear	
  
response	
  func4ons	
  to	
  environmental	
  factors	
  modeled	
  with	
  
linear	
  regression)	
  	
  

–  Risk	
  of	
  over-­‐fisng	
  



Appendix	
  
•  TARA	
  network	
  construc4on	
  sesngs	
  for	
  CoNet	
  

–  Spearman	
  and	
  Kullback-­‐Leibler	
  dissimilarity	
  (intersec4on	
  
enforced)	
  

–  Permuta4on	
  with	
  renormaliza4on	
  (1000	
  itera4ons)	
  and	
  
bootstrap	
  (1000	
  itera4ons)	
  

–  P-­‐value	
  per	
  method	
  and	
  edge	
  computed	
  from	
  both	
  distribu4ons	
  
–  P-­‐values	
  of	
  methods	
  merged	
  with	
  Brown’s	
  method	
  and	
  
mul4ple-­‐tes4ng	
  corrected	
  with	
  Benjamini	
  Hochberg	
  (cut-­‐off	
  at	
  
0.05)	
  

•  TARA	
  false	
  nega4ves	
  due	
  to	
  removal	
  of	
  environmentally	
  
driven	
  taxon	
  edges:	
  1	
  out	
  of	
  43	
  genus-­‐level	
  interac4ons	
  
whose	
  partners	
  are	
  present	
  in	
  the	
  input	
  matrices	
  	
  



Appendix	
  
•  Edges	
  linking	
  taxa	
  to	
  phosphate:	
  outlier	
  for	
  
nega4ve	
  PO4-­‐eukaryote	
  edges	
  at	
  the	
  surface	
  –	
  
consequence	
  of	
  blooms?	
  

Edge	
  type	
  (total	
  
node	
  numbers	
  in	
  
SUR	
  and	
  DCM	
  
taxon-­‐
environment	
  
union	
  networks)	
  

Posi4ve	
  
SUR	
  	
  

Nega4ve	
  SUR	
   Posi4ve	
  DCM	
   Nega4ve	
  
DCM	
  

Prokaryotes	
  
(2,922	
  and	
  2,777)	
  

186	
   286	
   98	
   191	
  

Eukaryotes	
  (4,334	
  
and	
  3,502)	
  

273	
   1178	
   383	
   411	
  



Appendix	
  
•  Edges	
  linking	
  taxa	
  to	
  temperature:	
  most	
  
posi4ve	
  edges	
  to	
  temperature	
  at	
  the	
  surface	
  

Edge	
  type	
  (total	
  
node	
  numbers	
  in	
  
SUR	
  and	
  DCM	
  
taxon-­‐
environment	
  
union	
  networks)	
  

Posi4ve	
  
SUR	
  	
  

Nega4ve	
  SUR	
   Posi4ve	
  DCM	
   Nega4ve	
  
DCM	
  

Prokaryotes	
  
(2,922	
  and	
  2,777)	
  

422	
   180	
   14	
   59	
  

Eukaryotes	
  (4,334	
  
and	
  3,502)	
  

756	
   99	
   29	
   94	
  



•  Edges	
  linking	
  taxa	
  to	
  NO2:	
  more	
  NO2-­‐
prokaryote	
  edges	
  at	
  the	
  surface	
  than	
  at	
  DCM	
  

Edge	
  type	
  (total	
  
node	
  numbers	
  in	
  
SUR	
  and	
  DCM	
  
taxon-­‐
environment	
  
union	
  networks)	
  

Posi4ve	
  
SUR	
  	
  

Nega4ve	
  SUR	
   Posi4ve	
  DCM	
   Nega4ve	
  DCM	
  

Prokaryotes	
  (2,922	
  
and	
  2,777)	
  

225	
   261	
   20	
   62	
  

Eukaryotes	
  (4,334	
  
and	
  3,502)	
  

295	
   691	
   464	
   286	
  

Appendix	
  



Appendix	
  
•  Comparison	
  of	
  environmentally-­‐driven	
  indirect	
  taxon	
  edge	
  

removal	
  techniques	
  applied	
  to	
  TARA	
  data	
  
–  Interac4on	
  informa4on	
  in	
  full	
  agreement	
  with	
  sign	
  paierns	
  indica4ve	
  of	
  

an	
  indirect	
  edge	
  and	
  in	
  par4al	
  agreement	
  with	
  network	
  deconvolu4on	
  	
  

sign%pa(erns%
n%=%29,900%

network%
deconvolu9on%
n%=%22,439%

8,209% interac9on%
informa9on%
n%=%11,043%

environmental%triplets%
n%=%29,912%

2,834%

14,220%

10%

2%

15,680%

Feizi	
  et	
  al.	
  (2013)	
  Nature	
  Biotechnology	
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  31,	
  726-­‐731	
  


